Feeds:
Posts
Comments

Posts Tagged ‘Metacognition’

by Reni Gorman

Tip #6: Provide many examples and practice exercises in which the same underlying concept is at work.

(Links to other articles in this series: 1 2 3 4 5 6)

Cognitive Psychology: Provide examples to facilitate transfer and meaningful deliberate practice to promote understanding and increase memory performance.

Why (Justification):

Bransford et al. (2000) recommend that teachers provide “many examples in which the same concept is at work”. (p. 20) In a study by Gick and Holyoak (1980), they presented subjects with a story of a general who breaks up his army into several smaller groups to take different roads to avoid setting off mines. They still all arrived at the same time and were able to take over the capital. Then subjects were ask to solve a problem where the doctor had to radiate a tumor with enough force to destroy it but without harming the tissue around it. Subjects were told to use the story as the model to solve the problem and most subjects realized that the strategy is to break up the radiation source into smaller rays and focuses them only on the tumor so that the strongest radiation is only there.

“Hands-on experiments can be a powerful way to ground emergent knowledge…” (Bransford et al., 2000, p. 22) However there are different ways to practice. Consider doing math homework with the use of formulas and theorems. If you just followed the rules of the formula, you may have completed your homework in less time than if you truly went through the formula to fully and deeply understand all the ins and outs of the formula. Students who understand the reasons behind a formula can usually remember it much better and apply it much better in the long run. They may even be able to more easily learn or transfer to related mathematical (or other) information that shares the same abstract underlying core concepts, or knowledge elements. (Anderson, 2000) “In mathematics, experts are more likely than novices to first try to understand the problems, rather than simply attempt to plug numbers into formulas.” (Bransford et al., 2000, p. 41) Paige and Simon (1966) conducted a study where they presented subjects with an algebra problem. The expert group quickly realized that the problem was logically impossible.

(more…)

Read Full Post »

Tip #5: Help your learners take control of their own learning.

(Links to other articles in this series: 1 2 3 4 5 6)

Cognitive Psychology: Use metacognitive techniques to assist learners to actively monitor their learning strategies and resources.

Why (Justification):

Bransford et al. (2000) highlight that active learning, that lets learners take control of their own learning, begins with metacognition. “A ‘metacognitive’ approach to instruction can help students learn to take control of their own learning by defining learning goals and monitoring their progress in achieving them.” (p. 18)

Anderson (2000) recommends improving memory for text by reading it in multiple passes, asking yourself questions as you go. “In research with experts who were asked to verbalize their thinking as they worked, it was revealed that they monitored their own understanding carefully, making note of when additional information was required for understanding, whether new information was consistent with what they already knew, and what analogies could be drawn that would advance their understanding. These meta-cognitive monitoring activities are an important component of what is called adaptive expertise (Hatano and Inagaki, 1986)” (Bransford et al., 2000, p. 18)

The case of Herbert A. Simon demonstrates adaptive expertise. Simon is credited for significant contributions to eight different fields of study. (Dasgupta, 2003)

Metacognition is what facilitates transfer. When you read, hear or see something, you have to analyze it, and ask questions about it. By monitoring their understanding, questioning and exploring the answers to their questions, students can achieve learning with understanding and become active learners.

(more…)

Read Full Post »

by Reni Gorman

(Links to other articles in this series: 1 2 3 4 5 6)

Tip #4: Find out what your learners know, or think they know.

Cognitive Psychology: Draw out pre-existing conceptions and, more importantly pre-existing misconceptions.

Why (Justification):

“Students come to the classroom with preconceptions about how the world works. If their initial understanding is not engaged, they may fail to grasp the new concepts and information that are taught, or they may learn them for purposes of a test but revert to their preconceptions outside the classroom.” (Bransford et al., 2000, p. 14-15) An excellent example comes from Vosniadou and Brewer (1989). Children think the earth is flat because of their pre-existing experiences with it such as walking on it and looking at it. When told the earth is round children picture a pancake instead of a sphere. They must be told it is spherical along with explanations as to why they have experienced it as flat in order for them to really learn and accept this new information.

New information learned can have an effect on how well you remember older information learned especially if the new information causes a conflict with the old and creates interference. (Anderson, 2000) The good news is that if we learn something new that contradicts what we thought in the past (retroactive interference), we will eventually forget the old information and remember the new information.

If learners have misconceptions that are not brought to light and corrected, they will never be able to effectively build on that knowledge in the future. Knowing what your learners know will also help you set the base-line and pace for the course. Many times instructors assume that their learners have a certain baseline knowledge, when in fact they do not… or they may think they know but their base line understanding is incorrect.

How (Application):

When designing your course, you must learn as much as you can about your learners. Are they beginners, intermediate, or advanced? What do they know, what do they need to know and what may they think they know or know incorrectly? If you can’t reach out to your learners before class then anticipate as much as you can… For example, you can think about the most common misconceptions about each of your main points. Try to come up with a question for each main point, the answer to which will clarify the misconception. For example: Do you think that pre-existing knowledge makes a difference in how people learn?

References:

Anderson, J. R. (2000). Cognitive Psychology and Its Implications: Fifth Edition. New York, N.Y.: Worth Publishers.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press.

Vosnaidou, S., & Brower, W. F. (1989). The Concept of the Earth’s Shape: A study of Conceptual Change in Childhood. Unpublished paper. Center for the Study of Reading, University of Illinois, Champaign, Illinois.

Read Full Post »